秦珊珊

发布时间:2021-03-24文章来源: 浏览次数:

秦珊珊

 邮箱: qinss@tjufe.edu.cn 


研究兴趣

高维统计、机器学习、贝叶斯统计、变点等。

主讲课程

统计机器学习、数据挖掘与机器学习实践、AI+机器学习等。

工作经历

2021.01 至今   讲师,统计学院,天津财经大学(TUFE

2020.07 2020.12   博士后,数学与统计系,加拿大约克大学。

教育经历

2015.09 – 2020.04   统计学博士,数学与统计系,加拿大约克大学

2011.09 – 2014.06   理学硕士,概率论与数理统计,兰州大学。

2007.09 – 2011.06   理学学士,数学与应用数学,河南工业大学。

科研项目

o 国家自然科学青年基金项目,项目名称:高维异质回归模型的稳健估计及应用 2023 – 2025,主持在研;

o 国家自然科学天元数学基金项目项目名称:高维非稀疏贝叶斯估计及其应用合作导师:复旦大学朱仲义教授 2023年,主持结项;

o 国家社会科学基金项目,项目名称:“复杂大数据的子抽样方法及应用研究“,2023-2026年,参与在研;

o 天津财经大学高层次人才项目启动基金,2021


发表论文

1. Qin, S., Guo, B., Wu, Y., Xie, H., & Dong, J. (2025). A constrained robust Markov regime-switching model for long-term risk evaluation. Journal of Applied Statistics, 1-16.

2. Qin, S., Tan, Z., Wei, D. and Wu, Y. (2025) PCA-uCP: an ensemble method for multiple change-point detection in moderately high-dimensional data. Statistics and computing, 35, 31.

3. Qin, S., Wang, S., Zang, J., and Yuan, P.* (2025) Enhancing CNNs with Detail Feature Module for High-pixel Image Classification. Stat, 14(1) e70034.

4. Qin, S., Zhang, G., Wu, Y., Zhu, Z.* (2024) Bayesian Grouping-Gibbs Sampling Estimation of High-dimensional Linear Model with Non-sparsity.  Computational Statistics & Data Analysis, 203, 108072.  

5. Qin, S., Tan, Z.*, Wu, Y. (2024) On Robust Estimation of Hidden semi-Markov Regime-switching Models. Annals of Operations Research. 338,1049–1081.  

6. Qin, S.*, Zhou, G., Wu, Y. (2023) Change-point detection for Multi-way tensor based framework. Entropy. 25(4), 552.  

7. Guo, W.,  Balakrishnan, N., & Qin, S.* (2023).  A  modified partial envelope tensor response regression. Stat, 12(1), e615.  

8. Jiang, H., Qin,S.*, & Padilla, O.H.M. (2022).  Feature Grouping and Sparse Principal Component Analysis with Truncated Regularization.  Stat, e538.

9. Shi, X., Qin, S.*, Wu, Y*.  (2021) Robust Detection of Abnormality in Highly Corrupted Medical Images.  Electronic Journal of Statistics.  15(2):  5283-5309 (2021).  

10. Qin, S., Sun, B., Wu, Y. and Fu, Y*.  (2021) Generalized Least-Squares Fitting in Dimension Expansion Method for Nonstationary Processes.  Environmetrics, 32(7), e2684.  

11. Ding, H., Qin,  S.*,  Wu,  Y.  and Wu Y.  (2021) Asymptotic properties on high-dimensional multivariate regression M-estimation.  Journal of Multivariate Analysis.  Vol 183, 104730.  

12. Qin, S., Ding, H., Wu, Y., & Liu, F. (2021).  High-dimensional sign-constrained feature selection and grouping. Annals of the Institute of Statistical Mathematics, 73, 787-819.

13. Qin, S.* and Wu, Y. (2020) General Matching Quantiles M-estimation.  Computational Statistics & Data Analysis, 106941.

14. Guo, W.*, Qin, S. and Zhao, Z. (2020) Generalized Ridge and Principal Correlation Estimator of the Regression Coefficient in Growth Curve Model.  Linear Algebra and its Applications, 115-113.

15. Qu, J., Qin, S.*, Liu, L., Zeng, J., and Bian, Y. (2016).  A hybrid study of multiple contributors to per capita household CO2 emissions (HCEs) in China.  Environmental Science and Pollution Research, 23(7), 6430-6442.  

16. Qin, S., Wang, J.*, Wu, J., and Zhao, G. (2016).  A hybrid model based on smooth transition periodic autoregressive and Elman artificial neural network for wind speed forecasting of the Hebei region in China.  International journal of green energy, 13(6), 595-607.

17. Qin, S., Liu, F.*, Wang, C., Song, Y., and Qu, J. (2015).  Spatial-temporal analysis and projection of extreme particulate matter (PM10 and PM2.5) levels using association rules:  A case study of the Jing-Jin-Ji region, China. Atmospheric Environment, 120, 339-350.  

18. Song, Y., Qin, S.*, Qu, J., and Liu, F. (2015).  The forecasting research of early warning systems for atmospheric pollutants:  A case in Yangtze River Delta region. Atmospheric Environment, 118, 58-69.

19. Wang, J., Qin, S.*, Jin, S., and Wu, J. (2015). Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources. Renewable and Sustainable Energy Reviews, 42, 26-42.  

20. Wang, J., Qin, S.*, Zhou, Q., and Jiang, H. (2015). Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. Renewable Energy, 76, 91- 101.

21. Qin, S., Liu, F.*, Wang, J., and Song, Y. (2015).  Interval forecasts of a novelty hybrid model for wind speeds.  Energy Reports, 1, 8-16.  

22. Qin, S., Liu, F.*, Wang, J., and Sun, B. (2014).  Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models. Atmospheric Environment, 98, 665-675.


关闭 打印责任编辑: